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Abstract

The solution of multi-layer transient heat conduction problems may be simplified by analyzing the different transition times of the various
layers of a composite slab. These transition times, in fact, allow the ‘disturbance’ effect of each layer on the eigenvalues of the composite slab to
be analyzed and estimated. It was found that the eigenvalues may be obtained in the first approximation by merging in increasing order the suitable
corrected eigenvalues of each layer for which explicit equations are available. The errors in the resulting dimensionless temperatures are of one
order of magnitude larger than the deviations between the exact and approximate eigenvalues. In particular, when one of the two outer boundaries
is kept at constant temperature and the transition times of the layers are quite different, the eigenvalues may be written down very simply as the
eigenvalues of the layer whose exposed surface is not at prescribed temperature. In this paper the temperature solution for the case of a two-layer
slab with interlayer thermal contact resistance is presented.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Two-layer composite slabs are of a great interest in many
of today’s engineering applications where transient heat con-
duction takes place. For example, a typical laser absorption
calorimetry experiment [1] involves a composite region consist-
ing of a thin glass sample (used in optical amplifiers connected
to optical fibers) and an aluminum holder. Another area of inter-
est is in the so-called double heat flux conductimeter [2] where
the experimental apparatus is consisting of three parallel layers.
However, having the two flux-meter plates of the same material
and thickness and boundary conditions on two exposed surfaces
of the same kind, the apparatus could be considered as a two-
layer composite slab. Also, structures composed of one carbon
matrix-carbon fiber material (orthotropic) and a layer of mica
(isotropic) are in increasing usage in extreme temperature envi-
ronments such as in aircraft and space operations [3,4].

Although some standard numerical methods are easily ap-
plied for the transient two-layer problems stated above, there
are cases where the analytical solution [3–9] gives more reli-
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able results and greater insight into the physical sense of the
phenomena. Moreover, the emerging fields of verification and
validation of numerically based approximate solutions [10] re-
quire to have accurate analytical solutions of transient two-layer
heat conduction problems. As short-time solutions are available
today for only single-layer bodies [10], the solutions for two-
layer configurations are only in the form of long-time solutions
and involve the presence of eigenvalues [3–8].

Therefore, in order that the two-layer analytical solution can
in every respect be ‘used’, it is needed for practical purposes to
compute the eigenvalues of the corresponding Sturm–Liouville
problem. However, because of discontinuous coefficients due
to piecewise-homogeneous bodies [11–15], this problem is not
of traditional type. This discontinuity inevitably leads to irreg-
ularities within the entire spectrum of roots (eigenvalues) of the
eigenvalue equation. Contrary, the are no similar irregularities
when homogeneous bodies are considered. In such cases the
Sturm–Liouville coefficients are perfectly smooth which makes
possible the computing of eigenvalues by approximate equa-
tions [11,16–20]. As a matter of fact, explicit solutions were
derived also for systems with discontinuous coefficients. They
were given in the form of an asymptotic scheme and accurate
only for large eigenvalues. However, as those solutions were de-
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Nomenclature

ai thickness of the ith layer . . . . . . . . . . . . . . . . . . . . m
Bic Biot number at the interface x = 0 : 1/Rc

Bii Biot number for the ith layer: hia1/k1
(cρ)i heat capacity per unit volume for the ith

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J K−1 m−3

Ce accuracy constant
ei thermal effusivity of the ith layer:√

ki(cρ)i . . . . . . . . . . . . . . . . . . . . . . W s0.5 m−2 K−1

f (β) function on the LHS of the two-layer
eigencondition (6)

�ζ,m mth corrective factor (for zm) defined by Eq. (16)
hi heat transfer coefficient for the ith

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2 K−1

hc thermal contact conductance . . . . . . . . W m−2 K−1

ki thermal conductivity of the ith layer . W m−1 K−1

Rc dimensionless thermal contact resistance:
k1/(hca1)

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
t+ dimensionless time: t/tc1
tci transition time scale for the ith layer: a2

i /αi . . . . s
Ti temperature of the ith layer . . . . . . . . . . . . . . . . . . K
T0 uniform initial temperature . . . . . . . . . . . . . . . . . . K
x space coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Xi,m mth eigenfunction of the ith layer
z1,m1 m1th dimensionless eigenvalue of the 1st layer, i.e.

m1th root of Eq. (12)
z2,m2 m2th dimensionless eigenvalue of the 2nd layer, i.e.

m2th root of Eq. (14)

zm mth initial approximation for βm

Greek symbol

αi thermal diffusivity of the ith layer . . . . . . . m2 s−1

βm mth dimensionless eigenvalue of the two-layered
slab of Fig. 1: λm · a1

γ geometric ratio: a2/a1

δ thermal diffusivity ratio: α2/α1

ε thermal effusivity ratio: e2/e1 = κ/
√

δ

ζm mth approximation for βm

Θi dimensionless temperature of the ith layer: Ti/T0

κ thermal conductivity ratio: k2/k1

λm mth eigenvalue of the two-layered slab of
Fig. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

ν1,m1 location of the m1th asymptote of f (β) due to the
1st layer

ν2,m2 location of the m2th asymptote of f (β) due to the
2nd layer

ξ dimensionless space coordinate: x/a1

τc transition time scale ratio: tc2/tc1 = γ 2/δ

Subscripts

i index (i.e., 1 or 2)
1 first layer and left side (x = −a1) of the two-domain

slab of Fig. 1
2 second layer and right side (x = a2) of the two-layer

slab of Fig. 1
veloped for general mathematical studies [11] and for a variety
of non-heat-conduction applications, such as applied mechan-
ics [12], geophysics [14] and oceanics [15], they are not suitable
for computing the eigenvalues in the case of transient heat con-
duction problems in layered media. For example, the equations
given in Refs. [11,15] are applicable only when thermal contact
resistance is negligible and the values of thermal diffusivity are
same for both layers.

The objectives of the present work are:

(1) to compute the eigenvalues of a two-layer slab with finite
thermal contact resistance using explicit approximate equa-
tions,

(2) to provide a criterion for estimating the maximum number
of eigenvalues, and

(3) to analyze the errors in final results.

For these objectives, a semi-analytical procedure has been de-
veloped. It is based on the evaluation of different transition time
period of each layer. Namely, it was found that the eigenvalues
of both homogeneous regions (for which explicit approximate
equations are available in literature [11,16–20]) keep almost
completely (through their transition times) the main physical
information contained in the composite slab for computing its
eigenvalues (‘physical part’ of the procedure). Then, the use
of a corrective factor in the explicit form completes the above
physical information and allows in a single step that the initial
approximation be very close to the exact value of the eigenvalue
(‘analytical part’ of the procedure). Similar results may be ob-
tained for the resulting temperatures over broad ranges of those
dimensionless groupings (namely, Bi1, Bi2, ε,

√
τc and Rc) on

which the eigenvalues depend. Also, it was found that the dif-
ferent transition time scales of two layers affect the maximum
number of eigenvalues and, hence, the convergence criterion of
exponentially-converging temperature solutions.

2. Temperature solution in a two-layer slab

The temperature solution of a linear one-dimensional time-
dependent heat conduction problem in the case of two-layered
slab with finite thermal contact resistance (Fig. 1), initially at
temperature F(x) (F1(x) for the 1st and F2(x) for the 2nd
layer) and subject with homogeneous boundary conditions of
any kind, can be evaluated for t+ � 0 as [5]

Ti

(
ξ, t+

) = Ai

∞∑
cmXi,m(ξ) exp

(−β2
mt+

)
(i = 1,2) (1)
m=1
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Fig. 1. Schematic representation of a 1-D two-region slab (with thermal contact
resistance) subject to convective boundary conditions.

where A1 = 1 and A2 = 1/ε. Coefficients cm depend on the
initial temperature as follows

cm = 1

Nm

[ 0∫
ξ ′=−1

F1(ξ
′)X1,m(ξ ′)dξ ′

+ 1√
δ

γ∫
ξ ′=0

F2(ξ
′)X2,m(ξ ′)dξ ′

]
(2)

Nm = 1

2

{[
1 + Π2

1 (βm)
](

1 + Bi1
β2

m + Bi21

)

+ 1 + Π2
2 (βm)

ε

[√
τc + Bi2/ε

β2
m + (Bi2/ε)2

]
+ Rc

}
(3)

By setting Bii → ∞ or Bii = 0 in the last equations, we have
boundary conditions of the 1st or 2nd kind, respectively. Notice
that the exponential part of Eq. (1) depend on a dimensionless
time t+ defined as t/tc1 for both the layers, where tc1 is the
‘transition time’ [21] of the 1st region. Also, the temperature of
the second region (i = 2) depends explicitly on the thermal ef-
fusivity ratio ε. The latter is due to the application of Tittle’s
approach [22] and separation of variables of the heat diffusion
equation, as was done in the early paper [5] (where, however,
the perfect thermal contact between two layers was assumed). If
the problem involves heat generation (g1(x, t) for the 1st region
and g2(x, t) for the 2nd region) as well as nonhomogeneous
boundary conditions (f1(t) at x = −a1 and f2(t) at x = a2),
the temperature solution may be calculated using Green’s func-
tions [23], that is,

Ti(ξ, t+)

=
0∫

ξ ′=−1

Gi1
(
ξ, ξ ′, u+)∣∣

u+=t+F1(ξ
′)dξ ′

+
γ∫

′
Gi2

(
ξ, ξ ′, u+)∣∣

u+=t+F2(ξ
′)dξ ′
ξ =0
+
(

a2
1

k1

) t+∫
u+=0

[ 0∫
ξ ′=−1

Gi1
(
ξ, ξ ′, u+)

g1
(
ξ ′, t+ − u+)

dξ ′

+ δ

κ

γ∫
ξ ′=0

Gi2
(
ξ, ξ ′, u+)

g2
(
ξ ′, t+ − u+)

dξ ′
]

du+

+
(

a1

k1

)[ t+∫
u+=0

Gi1
(
ξ, ξ ′ = −1, u+)

f1
(
t+ − u+)

du+

+ δ

κ

t+∫
u+=0

Gi2
(
ξ, ξ ′ = γ,u+)

f2
(
t+ − u+)

du+
]

(4)

where u+ = t+ − τ+ is the so-called cotime. Appropriate re-
placements have to be made in the last term of Eq. (4) when
the boundary conditions are of the 1st kind [23]. Notice that
when the two-layer problems involve local heat generations, the
temperatures may also be obtained by using the Fourier trans-
form [9]. The Green’s functions Gij (ξ, ξ ′, u+) which appear in
Eq. (4) are obtainable from the solution of the homogeneous
version of the problem under consideration (i.e. solution (1)).
Therefore, comparing Eq. (1) and the first term of Eq. (4) one
obtains

Gij

(
ξ, ξ ′, u+) = Bij

∞∑
m=1

1

Nm

Xi,m(ξ)Xj,m(ξ ′) exp
(−β2

mu+)
(i, j = 1,2) (5)

where B11 = κ , B12 = ε, B21 = κ/ε and B22 = 1. The eigen-
value problem associated with the present two-layer transient
problem may concisely be denoted by X3(C3)3, where 3 in-
dicates the order of boundary condition, while (C3) indicates
an imperfect contact interface (see more detail in [23] for the
notation system proposed by Beck et al.). In particular, the
quantity β = λ · a1 appearing in Eq. (1) through Eq. (5) is any
root (dimensionless eigenvalue) other than zero of the follow-
ing transcendental equation

f (β) = Π1(β) + 1

ε
Π2(β) + βRc = 0 (6)

where the functions Π1(β) and Π2(β) may be taken as

Π1(β) = β + Bi1 tan(β)

Bi1 − β tan(β)
(7a)

Π2(β) = β + (Bi2/ε) tan(
√

τcβ)

(Bi2/ε) − β tan(
√

τcβ)
(7b)

The contact conductance hc appearing in Rc = 1/Bic may be
calculated as proposed in [24]. The roots of the eigencondi-
tion (6), instead, are all real. In particular, the negative roots
are equal in absolute value to the positive ones and there
are no repeated eigenvalues as ∂f/∂β > 0. They form also a
monotonically increasing infinite series according to Sturm–
Liouville systems with piecewise functions [11–15]. Thus,
there are numerous space-variable eigenfunctions X1,m(ξ) and
X2,m(ξ), each corresponding to a consecutive value of βm

(m = 0,1,2, . . .)
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X1,m(ξ) = sin(βmξ) + Π1(βm) cos(βmξ)

ξ ∈ [−1,0] (8a)

X2,m(ξ) = sin(βmξ/
√

δ ) − Π2(βm) cos(βmξ/
√

δ )

ξ ∈ [0, γ ] (8b)

They vanish for βm=0 = 0 (‘trivial’ eigenvalue: notice that the
first term of the 1D summation of Eq. (5) is characterized by the
subscript m = 1) and satisfy the orthogonality property given
in Ref. [5]. From transcendental equation (6) it follows that the
eigenvalues βm depend on five dimensionless variables, namely
Bi1, Bi2, ε,

√
τc and Rc . Therefore, eigenvalues and Green’s

functions are completely independent of:

(1) origin adopted for the Cartesian frame of reference;
(2) initial temperature distribution;
(3) nonhomogeneity of the heat diffusion equation (due to heat

sources or sinks), and
(4) nonhomogeneity of the boundary conditions.

The computation of the eigenvalues is the fundamental step in
order that the formal solutions (1) and (4) can be ‘used’ to cal-
culate the thermal field within each layer.

3. Computation of eigenvalues

The f (β) function has infinite vertical asymptotes, whose
locations ν may be determined as solutions to the following
two equations

β tan(β) − Bi1 = 0 (9a)

(
√

τcβ) tan(
√

τcβ) − (Bi2
√

τc/ε) = 0 (9b)

Following Haji-Sheikh and Beck’s approach [6], Eq. (9a) is the
same eigencondition for a single-layer slab with thickness a1
and thermal conductivity k1, subject to linear boundary con-
ditions of 3rd and 2nd kind at x = −a1 (characterized by h1)
and x = 0, respectively. That case is concisely denoted by X32.
Eq. (9b), instead, is the same transcendental equation for a
single-layer plate with thickness a2/

√
δ and thermal conduc-

tivity k2, subject to the boundary condition of the 2nd kind
at x = 0 and the linear boundary condition of Robin type at
x = a2/

√
δ (characterized by h2

√
δ ). That case is denoted by

X23 but the eigenvalue transcendental equation is formally the
same [23].

The roots of Eqs. (9) and, hence, the locations νm of the
vertical asymptotes of f (β), may readily be computed by us-
ing the explicit approximate relations proposed in [16–20]. The
computation through Burniston and Siewert’s equations [16],
subsequently re-proposed by Leathers and McCormick [17],
involves, however, the numerical integration. As the f (β) func-
tion increases monotonically between its asymptotes (whose
locations are independent of Rc), it may be stated that: (1) the
f (β) function intersects the β-axis infinite times, and (2) there
exists only one eigenvalue between any two adjacent asymp-
totes. Therefore, the asymptotes νL,m and νU,m of f (β) may
be assumed as lower and upper bounds for the eigenvalues βm

of Eq. (6), as was done by Haji-Sheikh and Beck [6]. Once the
bounds are known, the eigenvalues may be reached through any
root-finding iteration. Concerning this, to avoid that f (νL,m)

and f (νU,m) → ∞ when the above iteration is applied, the
eigencondition (6) has to be rewritten in a free-asymptote for-
mat, that is, containing only sines and cosines.

However, analyzing the ‘disturbance’ effect of each layer
on the other one through the transition time ratio τc, it can be
noted that the explicit approximate equations for computing the
eigenvalues of homogeneous bodies [11,16–20] may properly
be extended to two-layered slabs, as shown in next sections.
The availability of explicit relations, in fact, simplifies signif-
icantly the treatment, reduces considerably the computational
time, provides a greater insight to the physical sense of the
eigenvalues and, finally, gives improved confidence in numeri-
cal results.

3.1. Analysis of the transition time scale ratio

The development of a general procedure based on explicit
approximate equations for the eigenvalues βm requires the
analysis of the role played by the dimensionless parameter τc

on the reciprocal ‘disturbance’ effect of two layers.
The square root of this parameter appears in the function

Π2(β) defined through Eq. (7b). As that function, which char-
acterizes the eigenfunction (8b) related to the 2nd layer, is
present in the transcendental equation (6), it is evident that

√
τc

affects the contribution of the 2nd layer to the locations of the
asymptotes of f (β) function. Notice that the LHS of Eq. (9b)
is the denominator of Π2(β). Contrary, the contribution of the
1st layer to the locations of the asymptotes of f (β) function is
not affected by

√
τc. In such a case, in fact, the LHS of Eq. (9a)

is the denominator of the Π1(β) function appearing in Eq. (6),
where Π1(β) characterizes the eigenfunction (8a) related to the
1st layer.

As first and second boundary conditions include the ex-
tremes of the convective boundary conditions, the f (β) asymp-
tote locations ν1,m1 and ν2,m2 due to the 1st and 2nd layers are,
respectively, in the following ranges

ν1,m1 ∈ [
(m1 − 1)π, (m1 − 1/2)π

]
m1 = 1,2,3, . . . (10a)

ν2,m2 ∈
[
(m2 − 1)π√

τc

,
(m2 − 1/2)π√

τc

]
m2 = 1,2,3, . . . (10b)

The lower limits of the intervals (10) have been obtained set-
ting Bi1 = 0 and Bi2 = 0 in Eqs. (9a) and (9b), respectively
(boundary condition of the 2nd kind). The upper limits of the
same intervals, instead, have been derived setting Bi1 → ∞ and
Bi2 → ∞ in the same equations (boundary condition of the 1st
kind).

It follows from Eqs. (10) that, when
√

τc < 1, the spacing
between any two adjacent asymptotes of the f (β) function is
mainly due to the first layer. In other words, until the asymp-
tote locations due to the 1st layer are not ‘disturbed’ by those
due to the 2nd layer, the above spacing is only due to the first
region, and for this reason holds quite regular over the β-axis.
Now, bearing in mind that there exists only one eigenvalue be-
tween any two neighboring asymptotes, it may be stated that the
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Table 1
First twenty intervals (lower and upper bounds—first two columns) where the first twenty exact eigenvalues βm of the eigencondition (6) are located for Bi1 = 1,
Bi2 = 2, Rc = 3,

√
τc = 0.2 and ε = 50. Approximations ζm (ζ1,m1 and ζ2,m2 ) for βm in a single step (i.e. after one iteration)

m νL,m νU,m βm ζ1,m1 —Eqs. (12) and (16) ζ2,m2 —Eqs. (14) and (16)

1 0.44661818 0.86033359 0.4658409945759 – – – 0.4675149550865 1 UB
2 0.86033359 3.42561846 1.0665052270397 1.0663491793683 1 LB – – –
3 3.42561846 6.43729818 3.5136653415080 3.5136649112273 2 LB – – –
4 6.43729818 9.52933441 6.4874757842725 6.4874757800089 3 LB – – –
5 9.52933441 12.64528722 9.5637914835748 9.5637914815317 4 UB – – –
6 12.64528722 15.72068533 12.6714053633543 12.6714053486765 5 UB – – –
7 15.72068533 15.77128487 15.7221671990973 – – – 15.7223513643256 2 UB
8 15.77128487 18.90240996 15.7929359183753 15.7929176592979 6 LB – – –
9 18.90240996 22.03649673 18.9199855158436 18.9199855119272 7 LB – – –

10 22.03649673 25.17244633 22.0515821031239 22.0515821029891 8 LB – – –
11 25.17244633 28.30964285 25.1856586190756 25.1856586189717 9 UB – – –
12 28.30964285 31.42229144 28.3213934628154 28.3213934615407 10 UB – – –
13 31.42229144 31.44771464 31.4230334787159 – – – 31.4231256835866 3 UB
14 31.44771464 34.58642422 31.4586174125270 31.4586082053453 11 LB – – –
15 34.58642422 37.72561283 34.5960534078279 34.5960534071697 12 LB – – –
16 37.72561283 40.86517033 37.7344405609678 37.7344405609400 13 LB – – –
17 40.86517033 44.00501792 40.8733201121571 40.8733201121334 14 UB – – –
18 44.00501792 47.12813355 44.0125858659987 44.0125858656628 15 UB – – –
19 47.12813355 47.14509774 47.1286283812241 – – – 47.1286898662644 4 UB
20 47.14509774 50.28536634 47.1523759318319 47.1523697839593 16 LB – – –

LB = Lower bound for the dimensionless eigenvalue of Eq. (6).
UB = Upper bound for the dimensionless eigenvalue of Eq. (6).
eigenvalues βm of the two-layered slab are regularly spaced un-
til the asymptote locations due to the 1st layer are ‘undisturbed’
by the presence of those due to the 2nd layer. That explains
the pattern of the eigenvalue spacing shown in the 3rd column
of Table 1. In particular, two adjacent eigenvalues β1+6·p and
β2+6·p (marked in gray) are very close between them, and this
occurs cyclically (i.e. for p = 0,1,2, . . .). Similar considera-
tions (although in a diametrically opposite direction) may be
drawn when

√
τc > 1. In such a case, in fact, the spacing be-

tween any two adjacent asymptotes is mainly due to the second
layer. When

√
τc = 1, instead, two layers contribute to the lo-

cations of the f (β) asymptotes in the same manner and, hence,
‘disturb’ reciprocally and continuously over the entire β-axis.
Then the eigenvalue spacing is fully irregular, contrary to what
has been maintained so far for Sturm–Liouville problems with
discontinuous coefficients [11–15].

It is evident, therefore, that the effect of each layer on the
spacing of both asymptotes and eigenvalues of the two-region
slab depends strictly on the transition time scale ratio.

3.2. Explicit approximate equations for the eigenvalues

The physical insights deriving from the previous subsection
are of notably concern because for example, when

√
τc < 1, the

eigenvalues z1,m1 (m1 = 1,2,3, . . .) of the 1st layer can also be
assumed as initial approximations for the eigenvalues β1,m1 of
the two-layered slab until the asymptote locations ν1,m1 due to
the 1st layer are not ‘disturbed’ by ν2,m2 due to the 2nd one.
This would also indicate that the effect of the second layer
(through its inherent variables Bi2/ε and

√
τc ) on the calcu-

lation of the initial approximations for β1,m1 is nearly negligi-
ble. When the disturbance effect arrives, the eigenvalues z2,m2

(m2 = 1,2,3, . . .) of the second layer can be assumed as ini-
tial approximations for the eigenvalues β2,m2 of the two-layered
slab. In such a case, the effect of the first layer (through its
inherent variable Bi1) on the calculation of the initial approx-
imations for β2,m2 can be neglected. Contrary, when

√
τc > 1.

Instead, when
√

τc = 1, the eigenvalues z1,m1 and z2,m2 of the
1st and 2nd layers, respectively, can alternatively be assumed
as initial approximations for the eigenvalues β1,m1 and β2,m2 of
the two-layered slab.

The considerations above are the key to extend the explicit
approximate equations for the eigenvalues of single-region
slabs [11,16–20] to two-region slabs, whose eigenvalues may
thus be obtained in the first approximation merging both z1,m1

and z2,m2 . For this purpose, the eigenvalues z1,m1 of the 1st
layer are the roots of the transcendental equation

Π1(z1) + z1Rc = 0 (11)

obtained by setting Π2(β) = 0 in Eq. (6), where Π2(β) charac-
terizes the 2nd layer. The computation of z1,m1 may be obtained
by considering that Eq. (11) is the eigencondition of a single-
layer plate with thickness a1, thermal conductivity k1, and lin-
ear boundary conditions of the 3rd kind at both x = −a1 (with
h1) and x = 0 (with hc)—X33 case. In fact, Eq. (11) may also
be rewritten as

tan(z1) = z1(Bi1 + Bic)

z2
1 − Bi1Bic

(12)

whose roots z1,m1 (m1 = 1,2,3, . . .) may readily and accurately
be obtained by using Haji-Sheikh and Beck’s explicit approx-
imate equations [19]. Hochstadt’s solutions [11] may also be
used but solely for large eigenvalues in view of their asymptotic
structure. Burniston and Siewert’s equations [16] (subsequently
re-proposed by Leathers and McCormick [17]), Stevens and
Luck’s relations [18] as well as Marinetti and Vavilov’s equa-
tions [20] cannot be exploited in such a case because they refer
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to only one adiabatic (or with prescribed temperature) and one
convective boundary condition, i.e. X23 and X13 (or X32 and
X31) cases.

Similarly, the eigenvalues z2,m2 of the 2nd layer are the roots
of the following equation

Π2(z2) + z2Rcε = 0 (13)

As the function Π1(β) affects the 1st layer, the above equa-
tion has simply been obtained by setting Π1(β) = 0 in Eq. (6).
The computation of z2,m2 may be derived using the fact that
Eq. (13) is the eigencondition of a single-layer slab with thick-
ness a2/

√
δ, thermal conductivity k2, and linear boundary con-

ditions of Robin type at both x = 0 (characterized by hc

√
δ )

and x = a2/
√

δ (characterized by h2
√

δ ) (X33 case). After
some algebraic steps, Eq. (13) becomes

tan(
√

τcz2) = (
√

τcz2)(Bic
√

τc/ε + Bi2
√

τc/ε)

(
√

τcz2)2 − (Bic
√

τc/ε)(Bi2
√

τc/ε)
(14)

whose roots z2,m2 (m2 = 1,2,3, . . .) may be derived through
explicit approximate relations [19].

3.3. Corrective factor

The Sturm–Liouville eigenvalue system of two layers appro-
priate for the temperature solutions (1) and (4) is given by

d2X1

dx2
+ λ2 · X1 = 0 (15a)

d2X2

dx2
+ λ2

δ
· X2 = 0 (15b)

∓ki ·
(

dXi

dx

)
x=∓ai

+ hi · Xi(x = ∓ai) = 0 (15c)

X1(x = 0) + k1

hc

·
(

dX1

dx

)
x=0

= X2(x = 0) (15d)

k1 ·
(

dX1

dx

)
x=0

= k2 ·
(

dX2

dx

)
x=0

(15e)

where the negative sign in Eq. (15c) is valid for i = 1, while the
positive sign for i = 2. By integrating the eigenvalue differen-
tial equations (15a) and (15b) on ξ ∈ [−1,0] and ξ ∈ [0, γ ],
respectively, and summing up the resulting expressions con-
sistently with the inner and outer boundary conditions (15c)–
(15e), an appropriate corrective factor �ζ,m = �ζ (zm) of zm

may be derived in following explicit form

�ζ,m =
[

1 − f (zm)

zmN(zm)

]1/2

(16)

Thus, the initial approximation zm (i.e. z1,m1 and z2,m2 ) for
βm (i.e. β1,m1 and β2,m2 ) can be brought very close to the exact
value βm in a single step (i.e. after one iteration). In other words,
the single-step approximation ζm for βm may be obtained in a
completely explicit form as ζm = zm�ζ,m, where zm may be
considered as the ‘physical part’ of the solution while �ζ,m as
its ‘analytical part’.

If f (zm) > 0, that is, zm is an upper bound for βm, then from
Eq. (16) it follows that �ζ,m < 1 and so ζm < zm and becomes
closer to βm. Contrary, when f (zm) < 0. It is also interesting to
observe that the corrective factor (16) depends on five dimen-
sionless variables, namely Bi1, Bi2, ε,

√
τc and Rc, which are

the sole variables affecting the βm eigenvalues.

3.4. Special cases

It can be useful to note that there are two special cases when
the eigenvalue computation may be performed efficiently and
satisfactorily:

(1) the contact resistance is negligible (Rc = 0) and two layers
of the composite slab have different thermal properties (i.e.
κ 
= 1 and δ 
= 1) but the same thermal effusivities (ε = 1);

(2) the thermal effusivity ratio is such that the relation Bi1 =
Bi2/ε is satisfied and the two layers of the composite slab
are characterized by the same transition times (τc = 1). No-
tice that the relation Bi1 = Bi2/ε is satisfied independently
of the value given to ε when either Bi1,Bi2 → ∞ (X1(C3)1
case) or Bi1 = Bi2 = 0 (X2(C3)2 case).

In the first case, applying the compound angle formula for
tangents and after some algebraic steps, the eigenvalue equa-
tion (6) reduces to

tan
[
β(1 + √

τc )
]

= [β(1 + √
τc )][Bi1(1 + √

τc ) + Bi2(1 + √
τc )]

[β(1 + √
τc )]2 − [Bi1(1 + √

τc )][Bi2(1 + √
τc )] (17)

whose roots βm may be known using the explicit approxi-
mate equations given in Ref. [19]—X33 case. Then, for a two-
domain slab with ε = 1 and Rc = 0, it may stated that the
eigenvalues are regularly spaced (which is typical of single-
layer slabs in view of the material homogeneity, in the sense of
material ‘regularity’), independently of the values given to

√
τc,

Bi1 and Bi2. This claim is important from a conceptual stand-
point. In fact, it is in disagreement with what has commonly
been asserted so far for Sturm–Liouville eigenvalue systems
with discontinuous coefficients [11–15]: “the more the coeffi-
cients suffer large discontinuities, the more severe these irreg-
ularities are”. In the current case, in fact, also when two layers
are characterized by very different transition time scales, the
roots continue to be regularly spaced.

In the second case, instead, after some appropriate manipula-
tions and knowing that Rc = 1/Bic , the eigenvalue equation (6)
becomes

tan(β) = β[Bi1 + Bic(1 + 1/ε)]
β2 − Bi1[Bic(1 + 1/ε)] (18)

whose roots βm may be derived using the explicit approximate
equations given in [19]—X33 case. Then, for a two-region slab
with τc = 1 and Bi1 = Bi2/ε, considerations similar to those al-
ready drawn for the previous case are valid. In the current case,
however, even when the interlayer resistance Rc is very large
and the two layers are characterized by very different thermal
effusivities, the roots continue to be regularly spaced.
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4. Number of eigenvalues

When the Green’s functions from Eq. (5) are evaluated, the
convergence is algebraic and slow for zero time, but exponential
and fast for dimensionless times other than zero. Because for
nonhomogeneous boundary conditions and volumetric energy
terms as well the Green’s functions have always to be evaluated
at zero time (see the time integration in Eq. (4)), the solution has
very slow convergence (many terms are needed for an accurate
computation).

The problem of slow convergence of the Green’s functions
may simply be by-passed by reformulating the heat conduction
problem as the difference between ‘steady state’ and transient
components (alternative GF solution method—AGFSM), as de-
scribed in Section 3.4 of Ref. [23]. In other words, nonhomo-
geneous boundary conditions and heat generation terms may
be removed and the problem becomes simplified with only one
modified initial condition. In such a way, corresponding integral
does not have to be evaluated at zero time, so the convergence
has an exponential rate.

From what has been said, the search for the maximum num-
ber M of terms (convergence criterion) in summation (1) is a
subject of great concern and will be treated in the next subsec-
tion.

4.1. Convergence criterion for exponentially-converging
temperature solutions

For this purpose, the long-time Green’s functions may be
rewritten as

Gij

(
ξ, ξ ′, t+

) = Bij

M∑
m=1

1

Nm

Xi,m(ξ)Xj,m(ξ ′) exp
(−β2

mt+
)

+ Eij

(
ξ, t+,M

)
(i, j = 1,2) (19)

where M denotes the maximum number of terms (eigenval-
ues) in the above summation as well as M + 1 indicates the
maximum number of asymptotes of the f (β) function. The ex-
ponential term in Eq. (19) reduces to the order of 10−10 (⇒
accuracy with absolute errors Eij less than 10−10) if the argu-
ment Ce of the exponential becomes as large as 23. That is,
exp(−Ce) ∼= 10−10 when Ce = 23 [10]. Therefore, M can be
found in accordance with the accuracy given for the tempera-
ture and consistently with the dimensionless time of interest. In
fact, the larger the time, the fewer terms are needed for a given
accuracy. Contrary, the smaller the time, the larger number of
terms is needed for the same accuracy.

To get the above convergence criterion, that proposed by Mc-
Masters et al. [10] for exponentially converging temperature so-
lutions in homogeneous bodies may be extended to two-layered
solids. However, as two domains have in general different tran-
sition times, Eq. (19) needs to be rewritten as

Gij

(
ξ, ξ ′, t+

)
= Bij

M1∑ 1

Nm1

Xi,m1(ξ)Xj,m1(ξ
′) exp

(−β2
m1

t+
)

m1=1
+ Bij

M2∑
m2=1

1

Nm2

Xi,m2(ξ)Xj,m2(ξ
′) exp

(−β2
m2

t+
)

+ Eij

(
ξ, t+,M

)
(i, j = 1,2) (20)

where M1 and M2 are the maximum numbers of terms due to
the 1st and 2nd layers, respectively, with M1 + M2 = M . Now,
as the eigenvalues z1,m1 and z2,m2 of the 1st and 2nd homoge-
neous layers can be assumed as initial approximations for the
eigenvalues βm (i.e. β1,m1 and β2,m2 ) of the two-layered slab
and the eigenvalues of homogeneous layers may be assumed
approximately proportional to (m − 1) · π [10], the following
conclusions may be drawn:

• the β1,m1 eigenvalues may be considered approximately
proportional to (m1 − 1) · π for a large index m1. Then the
maximum exponent in the 1-D m1 summation of Eq. (20)
becomes [(M1 −1) ·π]2 · t+ = Ce , which can be solved for
M1 to get

M1 = 1

π

(
Ce

t+

)1/2

+ 1 = 1

π

(
tc1 · Ce

t

)1/2

+ 1 (21a)

• the β2,m2 eigenvalues may be considered approximately
proportional to (m2 −1) ·π/

√
τc as m2 increases. The max-

imum exponent in the 1-D m2 sum of Eq. (20) may be taken
then as [(M2 −1) ·π/

√
τc ]2 · t+ = Ce, which can be solved

for M2 to obtain

M2 = √
τc(M1 − 1) + 1 = 1

π

(
tc2 · Ce

t

)1/2

+ 1 (21b)

Eqs. (21) allow the contribution of either region to the max-
imum number of asymptotes of f (β) to be also known. It is
given by M1 + 1 and M2 + 1, respectively. As the maximum
number of asymptotes is M + 1, one of the last two asymptotes
(the greatest between ν1,M1+1 and ν2,M2+1) has to be removed.
Combining Eqs. (10) and (21) it is easy to prove that ν2,M2+1
is larger than ν1,M1+1 when τc < 4/9 (or when τc < 1 and
Bi2 → ∞). Also, when the exposed boundary of the 2nd layer
is kept at constant temperature (Bi2 → ∞ ⇒ X3(C3)1 case)
and the square root of the transition time scale ratio verifies the
following relation

√
τc <

1

2M1 + 1
(22)

the first asymptote location ν2,1 is greater than ν1,M1+1. This
indicates that the second layer does not give any contribution to
the maximum number of asymptotes of the f (β) function. Fur-
thermore, as β2,1 > ν2,1 (Section 3), the second layer does not
give any contribution even to the maximum number of eigen-
values of the two-layered slab. In such a case, these eigenvalues
may be written very simply as the eigenvalues of the first region
governed by the transcendental equation (12) and may practi-
cally be considered undisturbed by the presence of the second
material. Similarly, it may be proven that the ν1,M1+1 location
is greater than ν2,M2+1 when τc > 9/4 (or when τc > 1 and
Bi1 → ∞). Also, when the outer sidewall of the 1st layer has
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a prescribed temperature (Bi1 → ∞ ⇒ X1(C3)3 case) and the
transition time scale ratio satisfies the following constraint
√

τc > 2M2 + 1 (23)

the eigenvalues of the two-layered slab may be written very
simply as the eigenvalues of the second region which has
Eq. (14) as an eigencondition. In such a case, they may be con-
sidered undisturbed by the presence of the first material.

5. Numerical results and discussion

To show that the fully explicit solutions ζ1,m1 and ζ2,m2

defined in Sections 3.2 and 3.3 can be assumed as quite
good approximations for the exact βm eigenvalues (β1,m1 and
β2,m2 ), consider a two-region unsteady problem characterized
by Bi1 = 1, Bi2 = 2, Rc = 3,

√
τc = 0.2 and ε = 50, whose re-

sults are provided in Table 1 for t+ = 0.01 and Ce = 23. The
first two columns provide us intervals where the first twenty ex-
act eigenvalues βm of the two-region body (third column) are
located. The lower νL,m and upper νU,m bounds of these inter-
vals are the asymptotes of the f (β) function, as illustrated in
Section 3. In particular, the bounds marked in gray are the as-
ymptotes ν2,m2 of the Π2(β) function on the LHS of Eq. (13).
This indicates that the 2nd layer contributes to the locations of
the asymptotes of f (β) only through four locations and in per-
fect accordance with the low value given to

√
τc (Section 4.1).

The remaining bounds, instead, are the asymptotes ν1,m1 of the
Π1(β) function on the LHS of the eigencondition (11). This in-
dicates that the 1st layer contributes through a good seventeen
locations.

The fourth and fifth columns of Table 1, from the other
side, give the approximate eigenvalues ζ1,m1 and ζ2,m2 de-
rived from the 1st and 2nd layers of the composite slab, re-
spectively. This indicates that the 1st domain contributes to
the first twenty βm through its first sixteen corrected eigenval-
ues ζ1,m1 (m1 = 1,2, . . . ,16). The 2nd domain, instead, con-
tributes only through its first four corrected eigenvalues ζ2,m2

(m2 = 1, . . . ,4). Notice that these results are in perfect accor-
dance with the physical significance of transition time [21]. In
fact, if

√
τc = 0.2, the 2nd layer is much closer to a lumped

capacitance body than the 1st one. This indicates that its ther-
mal behavior requires less eigenvalues than those needed for the
analysis of the 1st layer. It is also useful to observe that ζ1,m1

and ζ2,m2 are located only in those ranges whose lower limits
are the asymptotes that correspond to the 1st and 2nd layers of
the composite body, respectively.

A comparison between the approximate ζm and true βm

eigenvalues shows that the ζ1,m1 can be assumed as quite good
approximations for β1,m1 until the asymptote locations ν1,m1

are not ‘disturbed’ by those ν2,m2 . In such a case, the eigenval-
ues may be derived with an error less than 10−7%, as shown
in Fig. 2(a). When the disturbance effect arrives, the ζ2,m2 can
be assumed as quite good approximations for β2,m2 . Fig. 2(a)
shows the percent deviation |(ζm − βm)/βm| for different m

(from m = 1 to m = 20) and three different values of parame-
ter Rc. The oscillating trend of the percent deviations is due
to the disturbance effect of each layer on the other one. Notice
that the errors for Rc = 5 are much lower than those for Rc = 1.
This indicates that the disturbance effect of the 2nd layer on the
calculation of β1,m1 becomes more negligible as Rc increases.
Thus, the thermal contact resistance Rc plays its well-known
role of ‘screen’ not only for the heat diffusion between two lay-
ers, but also for the mutual influence of two layers.

On the other hand, Fig. 2(b) gives a convergence plot for
Rc = 3 showing how the relative error |(ζm − βm)/βm| in
the most slowly converging eigenvalues (m = 1,7,13,19, as
shown in Fig. 2(a)) decreases as the number of iterations in-
creases. The above eigenvalues are all due to the second region
and are completely disturbed by the presence of the first region.
It has been found that the percent deviation reduces rapidly
with the number of iterations N and is less than the order of
magnitude of 10−10 for N = 5 for the above four eigenvalues.
This indicates that the rate of convergence due to the corrective
factor �ζ,m defined by Eq. (16) is quite good, in particular for
N � 5.

5.1. Errors in the resulting dimensionless temperatures

Now, it is interesting to determine the effect that the ap-
proximate eigenvalues computed above have on the tempera-
ture within each layer of the composite slab for Rc = 3. For
this purpose, the homogeneous version of solution (4), i.e. the
exponentially-converging temperature solution (1), has been
considered. In such a case, assuming a uniform initial temper-
ature distribution (F1(x) = T0 and F2(x) = T0), constants cm

defined by Eq. (2) become [5]

cm = T0

Nmβm

[
cos(βm) − cos(

√
τcβm)

+ Π1(βm) sin(βm) − Π2(βm) sin(
√

τcβm)
]

(24)

As 1/
√

δ = √
τc/γ in Eq. (8b), the dimensionless temperature

of the 2nd layer depends also on the geometric parameter γ

(for example, we can consider γ = 2). Fig. 2(c) shows the per-
cent difference in Θi = Ti/T0 ∈ [0,1] between using exact βm

and approximate roots ζm after one iteration and for three dif-
ferent dimensionless times t+. The error in temperature is less
than 6% (for first layer and t+ = 1). As the first eigenvalue (the
most important) is evaluated with an error of about 0.36%, it
may be said, for this case, that the percent error in temperature
is increased of one order of magnitude. The percent deviations
between βm and ζm, instead, affect the calculation of the tem-
perature of the 2nd layer with an error having the same order
of magnitude than the error characterizing the first eigenvalue.
This is due to the fact that the first eigenvalue derives from the
2nd layer (see Table 1) and, hence, it is much more ‘appropri-
ate’ to describe the thermal field in the 2nd region rather than
that in the 1st one. Following the convergence procedure de-
veloped in Section 4.1 and assuming an accuracy of 10−15, the
above dimensionless temperatures have been calculated from
the first twenty five terms of Eq. (1) for t+ = 0.01, the early
nine terms for t+ = 0.1 and first four for t+ = 1. Notice that
step changes in the percent deviations at the interface ξ = 0
are due to the contact resistance. Finally, Fig. 2(d) shows how
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Fig. 2. Eigenvalue and temperature percent deviations when Bi1 = 1, Bi2 = 2,
√

τc = 0.2 and ε = 50. (a) ζm in a single step for m = 1 through 20 with Rc as
a parameter; (b) convergence plot of four eigenvalues for Rc = 3; (c) temperature after one iteration for ξ ∈ [−1, γ = 2] when Rc = 3 with t+ as a parameter;
(d) convergence plot of the 1st layer temperature at the interface ξ = 0 when Rc = 3, γ = 2 and t+ = 1.
the percent global error in the temperature predictions, namely
|[Θ(ζm) − Θ(βm)]/Θ(βm)|, behaves with increasing the pre-
cision of the eigenvalues. This plot was dealing with the first-
layer temperature calculated at the interface ξ = 0 for t+ = 1,
which represents the most slowly converging configuration (see
Fig. 2(c)). It may be observed that the percent deviation reduces
rapidly with the number of iterations N and is less than 10−9 as
N = 5.

The procedure proposed above has been successfully tested
for m = 1 through 100 and over broad ranges of the dimension-
less groupings affecting eigenvalues and temperatures: Bi1 and
Bi2 ∈ [10−4,104], ε and

√
τc ∈ [10−2,102], Rc ∈ [0,10] and

γ ∈ [10−2,102] . Moreover, the limiting boundary conditions
of the first and second kind were successfully tested.
5.2. Boundary surface at fixed temperature

From Eqs. (21), it is easy to prove that when t+ = 0.01,√
τc = 0.03, and Bi2 → ∞ the second layer does not give any

contribution to the maximum number of asymptotes and eigen-
values of a two-layered slab for 10−10 accuracy (i.e. Ce = 23).
The first layer, instead, provides 16 eigenvalues and 17 asymp-
totes. Fig. 3(a) shows that the percent deviations between the
exact βm and approximate zm eigenvalues of the two-layered
slab are very low, where zm are the exact eigenvalues of the
first layer (z1,m1 ). Furthermore, the above percent deviations
do not have any oscillating trend for m = 1,2, . . . ,16, con-
trary to what was occurring in Fig. 2(a). All this is due to the
fact that the eigenvalues βm are not disturbed by the presence
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Fig. 3. Eigenvalue and temperature percent deviations when Bi1 = 1, Bi2 → ∞,
√

τc = 0.03 and ε = 50 (with t+ = 0.01 and Ce = 23). (a) The |(zm − βm)/βm|
percent deviation as a function of the index m when Rc = 1,3,5. (b) The |[Θ(zm) − Θ(βm)]/Θ(βm)| percent deviation as a function of ξ with t+ as a parameter
when Rc = 3 and γ = 2.
of the 2nd layer. Notice, additionally, that the three deviations
for Rc = 1,3,5 are minimized for m = 13. This indicates that,
for m > 13, the initial approximations z1,m1 for β1,m1 begin
to ‘feel’ the effect of the 2nd layer, that is, the disturbance
effect caused by the first asymptote location due to the 2nd
layer (ν2,m2=1 = 52.35) is more significant. Concerning this,
it should be noted that z1,m1=16 (equal to 47.1663 for Rc = 1
and 47.1493 for Rc = 5) is very close to ν2,m2=1. Finally, be-
cause βm are not disturbed by the presence of the 2nd layer,
the eigenvalues are regularly spaced within the finite numerable
spectrum m = 1,2, . . . ,16. However, they continue to be irreg-
ularly spaced within the entire numerable spectrum due to the
inevitable disturbance effect of the 2nd layer.

Fig. 3(b) shows that the consequent error in temperature
(with γ = 2) is less than 0.017% (for second layer and t+ =
0.01) and the percent deviations between βm and zm affect
mainly the calculation of the temperature of the 2nd layer. This
is due to the fact that, in the current case, all the eigenvalues de-
rive from the 1st layer and hence are much more ‘appropriate’
to describe the thermal field in the 1st material rather than that
in the 2nd one. Finally, as the percent errors in temperature are
very low, the correction of the initial approximation zm through
the explicit factor (16) may be avoided. Thus, the eigenvalues
of the two-layer slab may be written very simply as the eigen-
values of a homogeneous layer.

6. Concluding remarks

A semi-analytical procedure has been developed to extend
the explicit approximate relations available in literature for
the regularly spaced eigenvalues of a classical Sturm–Liouville
problem to the irregularly spaced eigenvalues of an eigenprob-
lem with coefficients having the step change at an interior point.
A similar boundary-value eigenproblem arises from the tran-
sient heat conduction in a two-layered composite material.
The reciprocal ‘disturbance’ effect of two layers using
their transition time scales has been investigated. The analy-
sis showed that the eigenvalues of both regions can hold nearly
completely the physical information contained in the piecewise-
homogeneous slab. So, the two-layer eigenvalues may be ob-
tained in first approximation by merging in increasing order the
eigenvalues of each layer. Then, the use of a corrective factor
in the explicit form completes the above physical information
and allows the initial approximation to be brought very close
to the exact value of the eigenvalue in just five steps (percent
deviation less than 10−10%).

The errors in the resulting dimensionless temperatures are,
in general, one order of magnitude larger than the deviations
between the exact and approximate eigenvalues. In particular,
it was found that the temperature profile of the homogeneous
layer of a two-layer material is very sensitive to eigenvalue er-
rors when the eigenvalues are derived from the other layer.
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